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ABSTRACT

This thesis documents the design and implementation of an efficient primal simplex

capacitated transshipment network optimizer, SNET, written in the C programming

language. It describes a general symbolic network algorithm, discusses fundamental

decisions regarding data structures and essential functions and their relationship to the

network algorithm, and then details SNET's development. Development tools used in

this project, including standard test problems, profilers, timing routines, external drivers,

and debuggers, are also covered.

The resulting solver, SNET, is quite fast on standard NETGEN test problems, ap-

proximately twice as fast as a primal simplex network solver written in FORTRAN. The

effect of tuning parameters on SNET's performance is minimal.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research -may not

have been exercised for all cases -of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

A minimum cost capacitated transshipment (min-cost) network can model many

important problems that industry and the military must solve repeatedly: sl'ipment of

commodities, assignment of personnel and resources to tasks and requirements, routing

of vehicles, arnd design of distribution and communications systems, to name but a few.

This report describes the development of SNET, a fast and efficient C program for

solving minimum cost capacitated network problems, which the -author wrote for his

thesis research. It describes min-cost network models, documents key decisions, explains

choices of data structures and information representations, and describes in detail the

critical functions needed to implement the network optimization algorithm. The devel-

opment tools that significantly aided in the design and implementation of SNET are also

discussed, as is the effect of tuning parameters. Performance tests comparing GNET and

SNET for speed are included.

The source code for SNET is not included with this report. To obtain a copy of

SNET, please contact the author's thesis advisor: Professor Gordon H. Bradley.

A. NETWORK PROBLEMS

Minimum cost capacitated transshipment networks, hereafter referred to as

networks, are a special class of linear programming (LP) problems. They can be used to

model problems where

* Each variable can be interpreted as the (integer) amount of commodity flow on a
conduit or arc.

* Each constraint can be interpreted as a point or node that interacts with com-
modity flow arcs.

* Each node may either supply commodit to the network, consume commodity from
the network, or transfer cormodity to another node.

* Each arc is connected to two network nodes.

* The total supply of commodity into the network equals the total consumption of
commodity from the network.

Examples of problems that meet .. ese criteria abound in operational, strategic and

planning arenas. Min-cost netwirks are frequently used to model the following general

problems, which are common to both the military and industrial world:

e Communication Networks



* Personnel Assignments

* Movement of Units, Supplies, and Commodities

* Logistic / Production-Planning

* Financial Planning

Additionally, there- are -many specialized models unique to the military community:

* Wartime Allocation-ofAggregated Assets

* Specialized Weapon-to Target Assignments
* Manpower Mobilization

* Distribution- of Incelligence- Collection Assets

From these examples, it is clear that network models are not only important, but
can also be quite large. For example, a mi-itary manpowe mobilization- model to de-

termine U.S. Army -Wartime officer assignments could have over one hundred thousand
nodes -and-one million arcs. Thus, in solving network problems, the speed and efliciency

of the solver are important considerations.

B. NETWORK FORIULATIONS AND SOLVERS

The network matrix formulation (Figure 1) is the same as the -general LP matrix -for-
mulation. However, the network constraint matrix has a special property: its entries

-can only be + t, -I or 0, and each column must have exactly one + I and one -1.

A network can also be interpreted as a directed graph. Each node in the graph is
either exogenous, supplying flow into the network or demanding -flow from it, or

endogenous, transfer.-ng (or trnsshippin- flow through the network. Withiin the net-

work total supply mu.t equal-total demand. Each node-acts as a-constraint,-as-the -sum
of flow into and out of each node must equal zero. Each arc acts as a- variable with a

lower and upper flow capacity bound and a -linear cost proportional to -its current rate
of flow. Network vocabulary often uses the terms arc and variable interchangeably.
An optimal network solution transfers the flow through the network at fhe-minimum

possible cost. More detailed information on networks can be obtaind firont many

standard linear -prograrmming references. [Ref. 1:-pp. 404-439]

Tt,is paper concentrates-on- an implementation of the primal simplex algorithm, but
efficient solvers exist for many network algorithms. GNET [Ref. 2] and RNET [Ref. 3]
are sophisticated primal simplex programs. KILTER [Ref 41 is a fast primal-dual im-

plementation and RELAXT-IL[Ref 5] uses the relaxation method. Each of them has
contributed to the-advance of practical network solvers.



Minimize cx ,
Subject to Ax = b

1 <= X <= U

Where x is the decision variable vector
c is the cost vector
A is the constraint coefficient matrix
b is the right hand side constraint vector
1 and u are the variable bound vectors

Figure 1. Network Linear- Program Matrix Formulation.

C. TYPOGRAPHIC CONVENTIONS

In this paper, C programming language functions and variable names will be dis-

played in lower case boldface type. This convention accurately represents -the actual

variable and function names as the C language is case sensitive. Important terminology

will- be highliuhted in italics.
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II. NETWORK ALGORITHMS

SNET is based on the symbolic algorithm, a specialized version of the bounded

variable simplex method. The symbolic algorithm solves nran-cost network problems

using a graph interpretation of the model instead of the standard simplex tableau.

Though most standard LP texts derive the-bounded variable simplex method, many do

not cover the symbolic algorithm. This chapter fills that void. It summarizes the critical

information needed by the bounded variable simplex method, and then presents the-

symbolic algorithm, an alternative method of manipulating that information for net-

works.

A. THE BOUNDED VARIABLE SIMPLEX ALGORITHM

The tableau from the bounded variable simplex method contains four essential vec-

tors of variables: . basic variables, nonbasic variables at their lower bound, nonbasic

variables at their upper bound, and the current values of the basic variables. With these

four vectors and the information needed to begin the simplex method (the constraint

matrix and cost vector), one can recreate the rest of the tableau; dual prices, reduced

costs, and the value of the objective function; and hence, any basic feasible solution.

[Ref. 1: pp. 201-212]-

When the LP under consideration is a network, recreating the feasible solution is

simplified. First, by convention, all exogenous network variables and arc costs are in-

teger valued. If this convention is not natural to the problem, it is achieved by scaling.

Second, since the entries in the constraint matrix of a network consist of only positive

ones, negative ones, or zeros, trle basis inversion and subsequent matrix multiplications

to recreate dual prices and reduced costs are all integer operations [Ref 6: pp. 305-306].

The symbolic algorithm provides an easier way to recreate the feasible solution. The

Basis-Tree theorem, discovered by Koopmans and Hitchcock [Ref. 7], states that:

A set of columns of the contraint matrix comprise a basis if and only if the corre-
sponding set of arcs form a spanning tree.

Thus, the collection of basic arcs (variables) may be interpreted as a spanning tree. One

can associate with each basic arc its cost and current flow. If the nonbasic arcs and their

costs are maintained in two lists, one for arcs at their upper bound and the other for arcs

4



at their lower bound, all the information needed to recreate the feasible solution is

present.

After an initial basic feasible solution is obtained, the bounded variable simplex
method has four major steps:

1. Calculate the dual price of each constraint and the reduced cost of each variable.

2. Select a favorable variable to enter the basis. If none exists, then the solution is
optimal.

3. Determine which variable should leave the basis. If none would leave the basis,
then the solution is unbounded.

-4. Adjust relevant variables and update the basis.

The combination of steps I and 2 is referred to as selecting candidates. Steps 3 and 4,
together, are referred to as pivoting the basis. The symbolic algorithm uses the -same

basic steps, but its calculations emanate from the graph representation of the -spanning

tree and not from matrix -manipulation.

B. THE SYMBOLIC ALGORITHM

To obtain an initial feasible basis (spanning tree) for the symbolic algorithm, artifi-
cial arcs connect each node to the root node. The root node-is the only artificial node

in the spanning tree. It corresponds to the redundant row, equal to minus the sum of

the other rows, that can be appended to the constraint matrix. This row ensures that

each artificial variable will each-have exactly one + 1 and one -1 in their column. Recall

that a pure network problem-has exactly one redundant constraint, hence its basis would

be singular and noninvertable. Therefore any feasible basis must contain- at least -one
artificial arc, though-it may have zero flow.

Artificial arcs for supply nodes flow from the supply node to the root node. Simi-

larly, arcs for sink nodes flow from the root node to-the sink nodes. Artificial arcs for

endogenous nodes may flow either way. Initially, all flow passes through the root. The

cost for each artificial arc should be high, to drive it out of the basis. An artificial arc's

capacity can be set- equal to its initial flow, so no -increase in its flow is possible.

1. Dual Prices and-Reduced Costs

Dual-prices (DP) are uniquely associated with each constraint in a general LP
and, hence, with each node in a network. In the symbolic algorithm, a node's DP can

be interpreted as the cost that a unit of flow would incur while travelling from the node
itself to any arbitrary node. The root node can serve as that arbitrary node. Therefore,

a node's DP can be equal to the total cost that a unit of flow would incur as it travels



from the node to the-root node. If an arc flows from-the-current node to the-root node,
then- its-cost is added to -the DP. If the arc flows away -from the root and towards the

current node, then its cost is subtracted from the DP.

The reduced cost of each basic arc is zero, as in every variant of the simplex
method. To obtain the reduced cost of nonbasic arcs simply add the arc's-cost to the

DP of the arc's head and subtract the DP of the arc's tail.

2. Entering Variable

In a min-cost problem, a favorable variable -entering the basis has the potential

to reduce the value of the objective function. An -arc entering the basis at its lower

bound with a negative reduced cost will decrease the objective function as its flow in-
creases. Similarly, an arc entering the basis at its upper bound with a positive reduced

cost will decrease the objective function as its flow decreases. The greater the magnitude

of the reduced cost, the more favorable the arc. Therefore, arcs may be ranked or sorted

by their-reduced costs.

At each pivot, the reduction of the objective function's value is equal to the
entering arc's flow change, which may be zero, multiplied by its reduced cost. Although

choosing the entering variable -with the most favorable reduced cost will not insure the

largest improvement in the objective function, extensive experimentation over many

years has shown that, on average, it is best to choose- entering variables-this way.

As before, if no favorable arcs can be found, the solution is optimal.

3. Exiting Variable

Selecting an arc to leave the basis is the next step in the symbolic algorithm.

Recall that the basis arcs form a spanning tree. When the arc entering the basis is added

to this tree, a unique cycle is formed [Ref. 8: pp. 32-33]. As flow is adjusted around this

cycle, the feasible solution approaches optimality. Each of the cycle arcs must be ori-
ented either with or against the incoming arc. If the incoming arc enters the basis at its

lower bound, then-its flow can only increase. If flow increases on the incoming arc, it
will increase on arcs oriented with the incoming arc and decrease on arcs oriented

against it. If the incoming arc enters the basis at its upper bound, then its flow can only
decrease. If flow decreases on the incoming arc, it will decrease on arcs oriented with

the incoming arc and increase on arcs oriented against it. The arc which limits the

change in flow induced by the incoming arc will be the exiting variable.

Flow can be limited in -one of three ways. First, the incoming arc itself could

reach its opposite bound. For example, if the incoming arc enters the basis at its lower
bound, the flow around the cycle can change until the incoming arc reaches its upper

6



bound. Second, flow on an arc already in the basis can- increase until that arc reaches

is upper bound. Third, flow on an arc already in the basis can decrease until- that arc

reaches its lower bound. All flow changes are integer valued and it is quite possible that

multiple arcs will limit flow simultaneously. In this case, any (one) flow limiting arc in
the cycle may be chosen to leave the basis.

As in other simplex methods, if no arc reaches a limit the solution is unbounded;

however, in practical problems this is unlikely to occur.

4. Flow Adjustment

Cycle flow -can be adjusted after the limiting arc has been- identified. During
flow adjustment, the -limiting arc's flow will be driven to either its lower or upper bound.

The arc is then removed from the basis and placed in the proper nonbasic list. This step

completes the symbolic network algorithm.

7



III. FUNDAMENTAL DESIGN DECISIONS

During SNET's conceptual phase, several fundamental design decisions were made:

design objectives, -choice of a programming language, and composition of essential data

structures. These fundamental decisions impacted upon SNET's development in two

ways.

First, they provided a common philosophical foundation. This foundation assures

that the program, taken as a whole, is easier to understand and maintain than -a col-

lection of less similar modules. A common design philosophy also eases the program-

mer's task by providing a standard frame of reference for each module. Easing the

programnier's efforts leads to fewer coding errors and-reduces development time.

Second, the fundamental design decisions restricted the possible alternatives that

could be employed.- The choice of a language naturallylimits one to the features avai!-

able in that language. Likewise, the information present in the initial data structures

may be insufficient for effective implementation of an alternative unforeseen during the

conceptual phase.

These factors, guidance-and restriction, dictated that careful consideration be given

to the fundamehtal design decisions.

A. DESIGN OBJECTIVES

A number of desirable design objectives were identified during the conceptual phase:

* Solve large s( problems

0 Simple

* Easily Understood

• Modular

* Portable

* Fast

Although the network formulation itself is not inherently large, the problems that

networks represent often are. Thus, for a network solver to be applicable to a wide

range of problems, it must be able to handle large scale networks. How large is large

scale? The scale or size of a problem is defined by the number of nodes and arcs in the

network. In SNET, large is the smaller of two limits which depend upon the host com-

puter: integer capability and available memory.

8



Integer capability -requires that the sum-of the number of aics and-nodes in a-net-

work -be less than the maximum integer that the host can represent. Ty',ical -maximum

integers are 2(061) (32,768) for a personal computer (PC) and 2(2-)(2,147,483,648) for a

workstation or mainframe computer. For example, the integer capability of a PC would

allow it to handle any- network with less than 21S nodes -and arcs.

The amount of host memory, both core and virtual, available for dynamic- data

representation can also limit problem size. Each node's-dynamic representation requires

a fixed amount of memory,-as does each arc. A certain amount of memory is also re-

quired for program overhead. The sum of these three memory requirements- (node, aic,

and overhead) cannot exceed the-amount of data memory available. For example, if a

node requires 40 -bytes, an arc requires 20 bytes, 4K of overhead is present, and 64K of

host memory is available, -then any combination of nodes and arcs that could be stored

in less than 60K would be-allowable. A problem with 200 arcs and 1400 nodes would

be acceptable, but one with 300 arcs and 1351 nodes would not.

The smaller of these two limits, integer -capability and host memory, determines the

maximum problem size. Thus, in the example given, host memory available is the lim-

iting factor.

I-low simple ant easily understood a design is depends upon one's education and

experience. SNET can be understood by individuals with moderate experience in net-

work linear programming and a minimal knowledge of the C programming language.

One graduate course in each should suffice.

Simple and easily understood also implies that complex strategies will be employed
only when there is a significant gain in performance. Thus a complicated scheme, that

offered only modest improvement over a basic one, would not be utilized.

Simple designs are, by definition, easily explained. Thus, even though source code

may not be immediately legible to the uninitiated, one should be able to expain it w'it h

a minimum of sophisticated verbiage. This increases the odds that others may be-abie
to contribute to an improved solver in the future. Furthermore, software maintenance

costs can be drastically reduced.

By keeping solver design simple, one can concentrate on principles of the network

algorithm, rather than on the mechanics of the solver itself. The author believes that

this philosophy offers the best chance for future improvements in algorithm develop-

ment.

A modular design encapsulates frequently used- or functionally unique portions of
code into subroutines which are called without reference to their internal design. It also

9



allows different algorithms to be incorporated into the program without major restruc-

turing. One merely exchanges ',he new algorithm module for the old module without

concern for possible global effects. Thus modular code is easy to modify and allows

rapid development and testing of new algorithms.

There is, of course, a cost for the benefits of modular-code. If the overhead of en-

tering and exiting the module is substantial, considerable time could be wasted by the

modular structure. In this case, one would have to carefully -balance the advantages of

modular structure -against its cost.

A portable design-can be easily transferred among mary different host computers.

A single portable program can, with minimal recoding, serve in several environments.

The savings in programming effort are obvious. The disadvantages are not. If a pro-

grammer uses only -features that are completely portable, then often he cannot employ

advanced, nonstandard- features of a language that are more efficient for a particular

computer. The author employs only portable features.

Finally, the benefit of a fast program is obvious: problems can be solved in less

time.

B. PROGRAMMING LANGUAGE

SNET is written in the-C programming language in accordrce with te proposed

ANSI C standard. Optimizing a network is an intense computational problem. For

years FORTRAN was the doinnant language for such tasks. Fowever, within the last

ten years, C has gained prominence -[Ref. 9: p. 152] for intense computational problems

in many communities since it has several advantages over FORTRAN.

First, C generally executes faster than FORTRAN. Although more noticeable on

UNIX machines, whose operating systems are written in C, this is generally true for

most computers. Comparing assembly language generated from -C to that generated

from FORTRAN, reveals that C frequently produces shorter and more efficient code

segments [Ref. 9: pp. 155-156].

Second, C users can employ true pointer (memory addiess) var" v - ORTRAN

users cannot. The components of a network, nodes and arcs, are not independent.

Rather, they are coupled together in a determinate fashion. Fo: ,ch problems, pointers

are a natural-method of linking components tugether. Althoutgh one can-implement ar-

ray based pseudo-pointers in any language, the use -o1 true pointers is preferable. A

simple example illustrates why.

10



Suppcse one wishes-to find the child of a node. The pointer based construct for this

operation is

answer = node- > child

whereas the array based construct is

atnswer = child(node) .

In the pointer based construct, node is a pointer to he -address of a structure (a
collection of data variables) and child is a member of that -rce. The member, child,
is always located at a constant offset from the begnrnin, . 4ir'e structure. Given

the location -of the structure, the program immeoiatc. • k-. tne location of each

member,-and need only go to that location -and return th- ue of the variable located
there. The process of going to a location and returning i. e ;l'-ie- at that location is

known as indirection. Thus, retrieving the answer, which- ."- intc -in this case, re-

quires one indirection.

The array- based construct requires -significantly more effort. In this construct, node
is an integer valued variable -and- child-is an integer ,.ray. The-computer must first re-

trieve the 'alue of node, then using that valu. and- the size of the array elem-nts, calcu-

late-the offset from the beginning of the array. It must then add tnat offset to the array's
address to reurn the required address and, finally, perform-an indirection on -that ad-
dress. Thus, -retrieving the answer, which is an integer for -the array based construct,

requires several steps in addition to the indirection.

Third, C allows structures, collections of (possibly dissimilar) data variAlb!es, to- be
easily implemented. FOR "I AN has no str'cture facilities. Structures, sometimes re-

ferred to as records in other languages, allc .v related groups of variables .o be treated

in a natural manner. This intuitive method of organizing complicated data -simplifies and
clarifies programming requirements by allowing these groups to be handled as a unit.
For networks, whose nodes and arcs each have several different types and items of1 in-

formation, structures greatly simplify data retrieval and manipulation.

Fourth, the C language protocol specifies standard libraries of functions for
input,output, type conversion, math, memory management, and similar operations.

These functions are, technically, not part of the C language. Rather, they provide a

suppor' environment within which C can efficiently work. Other language3 , including

FORTRAN, incorporate these functions into the language itself. In-C, each compiler,

which is usually machine specific, has its own set of function libraries. Since these li-
brary interfaces are standardized, the means of accessing each function from within C is

alwa:ys the same, regardless of the computer used. But As -the libraries are designed-fi.,

11



each machine, the function's implementation- can be locaiiy optimized. Thus, the C

function libraries suppor'. development -Of portable programs which will run efficiently

on most computers.

Fifth, C can enter and- exit its function modules with minimal overhead. Ths

modular design, breaking large, complex tasks into- smaller, simpler ones, -can be used-

without excessive fear of inefficiency in- C.

C. DATA STRUCTURES

SNET's network data is-inaintained'in two data structures: node and arc. A third

structure, the arc list element (ALE), -is used when t:voting the basis. The C code

needed to-implement ..lese -three structures isin Figure 2.

Both nodes and arcs have properties and valucs that are intrinsic-to them. A. var-

iables are integer valued. The maximum value that a variable may assume dete_ nines

if it should- be typed as an int (integer) or long (long -integer) variable.

Each node has -a label that identifies its external association point. It may have flow

that is exogenous (external) -to the network. Within the basis tree, each node has a

specific depth and a dual price that is relative-to-the root node. The depth and dual price

are likely to change as-the basis-is-updated.

An arc also -has several important elements. It has a cost- per unit flow, a maximum

capacity, and often a minimum capacity. Of course, it will always have a current flow

value, which may be zero, and a reduced cost. The latter two quantities may be fre

quently updated.

However, as noted before, nodes and arcs do not exist in a vacuum. They are cou-

pled together in a determinate fashion. SNET uses po'nters io link components to-

gether. Note that pointers point to other structures, not from (hem.

In SNET, eacY tiode can be connected to three other iiodes: a parent node, a sibling

ilode, and a child node. Thus the node structure contains three node pointers: parent

(p), sibling (s), and clild (c). Recall that each node in the network, except the artificial

root node, always has exactly one paren, nod!,-ar..1 i. c-.nnected to- that parent node by

exactly one arc. Thus the node structure contains one arc pointer: parent arc (pa).

Each node is always accounted-for in the basis-spanning tree, so there-is no need to track

it elsewhere. It is also important to note-that each node contains sufficient information

to enter the basis tree and trace completely through it. Therefore, these four pointers

are sufficient to link the node into the basis tree at all times.
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/* Structures */
struct nodetype
{ int ibl, /* label, i.e. node nbr */

d ; /* tree depth
long b, /* exogenous flow

dp ; /* dual price */
struct nodetype *p, /* parent */

*s, /* sibling
*c ; /* child- *

struct arctype *pa ; /* parent arc */) ;
typedef struct nodetype node

struct arctype
long 1, /* lower capacity */

u, /* upper capacity *1
G, /* unit flow cost */
r, /* reduced cost */
x ; /* flow

struct nodetype *h, /* head node */
*t ; /* tail node

struct arctype *next ; /* next arc in 'out' list */

typedef struct arctype arc ;

struct arclistelemtype
struct arclistelemtype *next
struct arctype *a};

typedef struct arclistelemtype ale

Figure 2. SNET Data Structures.

Arcs arn. simpler to handle. When in the basis, each arc is associated with one- head

node and one tail node. When out of the basis, the arc-will be located -ir one of three

linked lists of similar arcs, depending on whether its flow is at its lower or upper-bound,

or the arc is being considered as a candidate for entering the basis. Thus the arc struc-

ture contains two node pointers, head (h) and tail (t), and one arc pointcr, next arc

(next).

It is inforaiative to note that array based languages must also track the interlinking

relationships and integer values just detailed. Generally, a set of parallel arrays is the

only practical method for non-pointer languages to handle this information. As noted

earlier in -t!is chapter. parallel array operations are inefficient compared to pointer op-

erations. P~ogran employing parallel arrays suffer a significant performance degrada-

tion.
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The -third structure, the ALE, identifies the-arcs in the unique cycle formed- during

pivoting. It has two pointers: next ALE (next), and arc (a). Cycle arcs are pointed to

by linked lists of ALEs, where next links elements of the list together, and a points to

the cycle arc-that that element identifies.

Another possible implementation to efficiently mark the cycle involves placing an

additional arc pointer in the arc structure. However, this design must place that addi-

tional pointer in each arc structure; significantly increasing the memory required to

represent the dynamic data structures.
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IV. PROGRAM DEVELOPMENT

The symbolic algorithm and fundamental design- decision form the -structure upon

which SNET is built. But the construction of an efficient program requires many other

important elements:

* Symbolic and other Constants

* Global Variables

e Key Functions: Collecting candidates, selecting a candidate, pivoting

* External Files

This chapter describes those elements. It also covers tools used to test and tune the

program.

A. SYMBOLIC AND OTHER CONSTANTS

Several constants are important for the symbolic algorithm itself, and for the C im-
plementation of the algorithm. SNET uses two types-of constants: symbolic and pro-

gram defined.

The numeric values of symbolic constants are set prior to program compilation and
are determined by the scale of expected problems and capabilities of the host computer.
These constants are called symbolic because they can be represented by a symbol or word

(usually denoted by capital letters in C). SNET has four symbolic constants:

MAXNODES, MAXARCS, INFINITY, and MAXCAN.

MAXNODES and MAXARCS are determined primarily by the scale of the ex-
pected problems. They dimension arra3 s and control looping structures. MAXNODES

must be at least one greater than the number of real nodes in the network to accom-

modate the root node. MAXARCS must be at least one greater than the number of

nodes plus the number of arcs in the network. Nodes are included in the count, as each
node must initially be connected to the root node by an artificial arc. The maximum

value of MAXNODES and MAXARCS is constrained only by the memory capacity of

the host computer and its integer range.

INFINITY should equal the largest long integer that the host can represent. It is
used to prevent integer overflow and to initialize comparison variables when determining

maximum and minimum values among sets.
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MAXCAN serves as the -upper bound for maxnbran, the maximum number of

candidates. In empirical studies with problems as large as 35000 arcs, 20000 has been

effective as a bound.

Program defined constants are set by the program at run time based upon input

data. SNET has two critical program defined constants: Big M (bigm) and maximum

number of candidates (inaxnbrcan).

Big M is the cost assigned to artificial arcs. It must be large enough to drive their

flow to zero if the problem can be solved. In SNET, Big M is one more than half the

sum of all positive real arc costs. Since any flow on-an artificial arc, either to or from
the root node, must also be carried on another artificial arc, the cost assigned by Big

M is sufficient to drive their flow to zero.
If the value of Big M is too large for the host computer to represent, SNET halts

and so informs the user. In this case, the user may either rescale arc costs or set Big M

to a smaller value. However, when a lessor value is chosen and the final- solution has
positive flow on one or more artificial arcs, it cannot be readily determined whether the

problem is infeasible or the value of Big M is too small.

niaxnbrcan, (sic) is, in full, the maximum number of favorable candidates encount-
ered and considered for inclusion in the candidate queue during each collection. A col-

lection is a single attempt to gather favorable candidates.

maxnbrean is initially set to MAXCAN. However, this default value may be over-

ridden by the command line agument, percan, which is the percentage of out of basis
candidates to be examined. In this case, maxnbrcan is set equal to percan multiplied

by the number of real arcs less the number of nodes. The number of nodes is subtracted

from the number of arcs before multiplication because each node (except the-root node)

requires one arc to connect it to the basis tree.

B. GLOBAL VARIABLES

Global variables may (potentially) be accessed anywhere in the program. Local
variables are only available within their defining function. Thus, local variables cannot

conflict with identically named local variables in different functions. But global variables

can cause such conflict. Hence the use of global variables should be restricted to those

few variables that are required by several functions.

SNET has eight global variables:

* outhi, outlo, and canque are arc pointers to the heads of three linked arc lists:
specifically, arcs out of the basis at their upper bound, arcs out of the basis at their
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lower-bound, and arcs-in the reduced cost candidate queue. They provide the only
access-to these lists and are used frequently throughout the program.

* arcs and nodes are arrays of pointers to all arcs and all nodes. They are used to -set
up the initial feasible solution, and to output the final (optimal) feasible solution.

* root is a node pointer to the root node. It is used to establish the initial feasible
solution and as a default node to enter the basis tree.

* input and output are FILE pointers to the input and output files.

C. KEY FUNCTIONS

Practical implementations of the symbolic algorithm often organize candidate se-

lection and -basis pivoting into three steps:

* Collecting a large group of favorable arcs into a candidate queue

* Getting candidates from the queue-until it is empty

* Pivoting candidates, one at a time, into the basis

SNET's principal functions, collectcan, getcan, and pivot, implement these three

steps. This section will describe them in sufficient-detail for the reader to understand the

general implementation of the symbolic algorithm and -its relationship to the data

structures discussed thus far. Specific C code will not be discussed.

1. Collecting Candidates

Collecting and organizing candidates is accomplished by two functions:

collect caii and merge. collectcan (sic) performs a collecion -by (usually) traversing ev-

ery arc in the out of basis lists. As each arc is visited, collect..can calculates its reduced

cost. If the reduced cost is favorable, itdetermines if a more favorable arc with the same

head node has already been traversed. If a more favorable arc has not been traversed,

the arc and its predecessor in the linked list are recorded. Thus, after the traversal is

complete, the most favorable arc flowing into each node has been recorded. These fa-

vorable arcs are then removed from their out of basis list and placed into another linked

list, the candidate queue. The merge function [Ref. 10: pp. 113-1141 can be used to sort

linked lists, collectcan uses merge and a modified binomial comb [Ref. 10: p. 264] to

sort the candidate arcs by the absolute value of their reduced cost. After sorting,
collectcan sets the canque pointer to the first arc in the candidate queue and returns the

number of candidates in the queue.

Unless instructed otherwise, collect-can will traverse the entire out of basis list.

However, as discussed earlier, the user can set maxnbrcan, the maximum number of fa-
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vorable candidates to examine for inclusion in the candidate queue during each col-

lection.

In summary, collectcan examines the out of basis lists, and builds the candidate

queue, a sorted linked list containing the most favorable candidate arc flowing into each

node.

2. Picking a Candidate

Candidates must be selected to be pivoted into the basis until the candidate

queue is exhausted. getcan (sic), which~performs this function, begins at the head of the

candidate queue, indicated by canque, and traverses it until- a- favorable candidate is

found or the end of the list is encountered.

Recall that the-candidate queue is -a sorted linked list of arcs that were very fa-

vorable when collect-can was invoked. However, after one or more pivots, they may not

remain favorable. Thus, as each arc in the queue is traversed, getcan recalculates its re-

duced cost. If the reduced cost is still favorable, getcan returns a pointer to that arc and

resets canque to the next arc in the list. If the reduced-cost is -not favorable, getcan re-

turns that arc to fthe appropriate out of basis list. If the candidate queue is empty,

getcan ieturns a NULL pointer to the calling routine, indicating exhaustion.

3. Pivoting the Basis

Pivoting the basis involves three major steps: selecting a variable to exit the

basis, adjusting the relevant variables, and uIating tile basis. The arc which limits the

change in flow induced-by the incoming arc, as discussed in Chapter 2, will be the exiting

variable. The relevant -variables are the arcs on the unique cycle that the incoming arc

forms. As flow is adjusted on them, the feasible solution approaches optimality. Since

the basis arcs form a spanning tree, updating the basis can be-equated to rehanging the

basis tree.

Three functions are-required to pivot the basis: the principal function, pivot, and

two subordinate functions, mature, and calc..ddp.

pivot (sic) first traces out -the unique cycle formed by the incoming arc, newarc.

As it traces the cycle, pivot must record two items of information on each cycle arc:

orientation and location. An arc's orientation is measured relative to newarc's. An arc

can either flow with, in the same direction as, or against, in the opposite direction-to,

newarc. pivot records-orientation by using two ALE lists: a with flow (wflow) list and

an against flow (aflow)-list. Location is also measured relative to newarc. A cycle arc

must be located either on newarc's head side, or newarc's tail- side. An arc's location is

stored in its next field.
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pivot begins the cycle trace by receiving newarc, the incoming arc that getcan
gelected, from the main program. neivarc's (sic) head and tail nodes are then identified.
If both nodes are not at the same depth in the spanning tree, pivot travels up the deeper

side, noting each arc's location and orientati until it reaches the node at the same
depth as the end node of the untraversed bran., pivot then travels up both sides of the
cycle until it reaches the first common node. Again, each arc's data is noted. When the
common (joining) node has been reached, each arc in the cycle has been identified and
classified with respect to orientation and location.

If newarc was out of the-basis -at its lower bound, then those arcs oriented in the
same direction as newarc can only increase their flow, and- those opposing -newvarc can
only decrease their flow. Conversely, if newarc was out of the basis at its upper bound,
those arcs oriented in the same direction as neviarc can only decrease their flow, and
those opposing neisarc can only increase their flow. pivot makes this association and
renames ifflow and aflow to increase and decrease as appropriate. It then traverses both
lists, searching each for the arcs allowing the minimum possible change. After locating

these arcs, pivot is ready to select the exiting arc, oldarc.

oldarc (sic), will be the arc that limits the flow change induced by newarc. pivot
compares the flow limits imposed by neivare itself, the minimum increasing arc and the

minimum decreasing arc. The arc with the smallest limit becomes the exiting arc. If
there is a tie in limits, pivot selects newarc if possible, otherwise it selects the decreasing
arc. The variable delta is set to the limiting quantity of the limiting arc. If delta is
greater than zero, the increase and decrease lists are traversed and their flows adjusted
appropriately, as is newarc's flow.

If the incoming arc, newarc, is not also the outgoing arc, oldarc, then the basis
tree must be rehung. Rehanging first adds neisare to, and removes oldare from, the

spanning tree structure. Next, the stem, which consists of the cycle arcs and nodes be-
tween neware and oldarc inclusive, must be adjusted. The mature function standardizes-
the stem by making each stem node the first child of its parent. This permits adjustment
of the stem's parent, child, sibling, and parent arc relationships in an efficient manner.

Next the disposition of oldarc must be resolved. Recall th,.t there are two types
of arcs in the symbolic algorithm formulation, real and artificial. A real arc is one that
corresponds to an existing arc in the network. An artificial arc does not correspond to
any arc in the network. It is used to establish an initial feasible solution in the symbolic
network formulation. If oldarc is a real arc, or an artificial arc with positive flow, it will
be added to the appropriate out of basis list. Otherwise, it is discarded.
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pivot's final step is to call calc.fidp which recalculates the depth and dual price

of each rehung node.

D. EXTERNAL (INPUT/OUTPUT) FILES

SNET requires only two I,O files. The input file-contains network data in standard

network format. The first line of the input file indicates-the number of nodes (N) in the

problem. All subsequent lines are four-tuples, indicating tail, head, cost, and capacity

of the arcs. Exogenous flow, either to or from a node, is indicated by exogenous arcs in

the input file. A node's supply is indicated by an arc coming from the source node (node

number N + 1) to that node. A node's -demand is indicated by an arc going from that

node to a sink node (node number N + 2). The cost of these exogenous arcs is zero and

their capacity is the amount of the exogenous flow.

The input filename is normally designated from the command line. If the -filename

is giveih on the command line, SNET will explicitly request one. If the input file does

not-exist or the input data is not in the correct format, SNET will so inform-the user and

then halt.
The solution is written -to the output file. The output file contains the tail, head,

flow and cost of each active (nonzero flow) arc and the value of the objective function.

Its filename consists of the input filename with .ans concatenated to it.

E. TESTING/TUNING TOOLS

Many tools are available to assist a programmer in efficient algorithm implementa-

tion. Among the more valuable tools used in SNET's development were debuggers,

profilers, data snaps.'ots, and timing routines.

1. Debugger

A debugger is a software -package--distinct from the software being developed--

that can precisely control and display the execution of compiled source code. It can

assist a programmer in locating and correcting program errors (commonly called bugs).

Often, more time is spent locating and correcting program errors in a program than was

spent writing it. Debuggers, by expediting the-correction process, help reduce-debugging

time and speed the development process.

Several useful facilities are available in most debuggers. Perhaps the-most val-

uable debugging function is the ability to observe and change variable values during

program exec,tion. A debugger can display values at any point in time or continuously

during execution. It can also allow-the user to change the value of a variable, regardless

of its previous program defined value.
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Different methods of execution control are usually available. A debugger can

usually step through code one line or executable statement at a time. Most debuggers

offer the option of stepping into or over subordinate:functions at the user's discretion.

Breakpoints or execution- halt points are also a -common feature. When the user sets a

breakpoint in the source code, the debugger will run-the program up to that point, and

then-return execution control to the user. A few debuggers can also step through code

in reverse order, that is, they can run the program backwards, allowing decisions and

data manipulations to be undone. This facility allows the user to perform complex

multiway decision tests with ease.

Although competent debuggers offer many additional features, these two, dis-

play and control, were sufficient to locate many obscure errors in the early S-NET code.
The -author highly recommends the use of a debugger for -even moderately complex

programs.

2. Profiler

A profiler measures a program's performance and execution time. It, like the
debugger, is also external to the source code under development. Profiler software tab-

ulates program execution time, either by function or line; counts how many -times a line-

is executed; and tracks how many times a function is called and by whom. It can also

monitor activities external to the program, such as CPU interrupts and disk accesses.

By monitoring critical activities and providing detailed reports on them, a profiler high-

lights inefficient program segments and can assist the programmer in refining his code

For efficient execution.

Without profilers, programmers have to resort -to ad hoc timing and counting

functions that must be inserted into the source code and modified as the timing interests

change. The information they return is neither as complete nor accurate as that pro-

vided by the profiler. Ad hoc functions can also skew the information gathered by the

execution resources that they consume.

SNET's -tuning process used a profiler that gathered statistics by function. An
example profile of an early version of SNET for the net43 problem is given in

Figure 3.

In this example, the fscanf function, which reads in the problem, consumes approxi-
mately half of the program's time. This time cannot be reduced if the decision to pro-

gram in standard C is followed. Thus, the programmer must search elsewhere for
improvement. The conflict between collect-can and pivot is of interest. In past primal

simplex implementations, costing out variables was more expensive than pivoting them
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into the basis. As the profile indicates, this is not the case here. Thus, the programmer

may wish to-examine these two functions in more detail.

3. Data Snapshots

A debugger enables the programmer to view critical variable values during pro-

gram execution. However, sometimes this is still inadequate to correctly diagnose a

program error. In this case, a partial or complete snapshot or dump -of data structures

is required. The three functions, dumpnode, dumparc, and dumpale, shown in Figure 4,

can provide -a complete or partial snapshots of the data structures at any point in the

program.

A call to these functions with the relevant pointer will direct a snapshot to an

external snapshot or dump file. Each function- starts at the element indicated by -its in-

coming pointer, and then recursively visits the remaining elements in the relevant struc-

ture. dumpuode (sic) can be used to examine the basis tree. The out of basis lists are

detailed by the dumpare function. The dumpale function can be used to examine the

candidate queue and the cycle identified during basis pivoting. These functions were

most useful in diagnosing the rehanging of the basis tree.

4. Timing Routines

In evaluating alternative implementation strategies, it is easy to be misled if one

examines strategies on only a few problems. A better approach is to compare the per-

formance of alternative strategies over a wide variety of problems.

External timing routines can easily compare different programs and record their

performance over a wide variety of problems. TESTEXEC, a timing routine used in

SNET's development, is shown in Appendix C. The programmer can implement the

competing strategies in different versions of SNET and then run TESTEXEC to compare

the programs. TESTEXEC uses the 40 standard NETGEN [Ref. 1 I] problems to com-

pare program performance.

Thus, when comparing alternative strategies, one should test them over a wide

variety of problems. As TESTEXEC demonstrates, the power of modern computers and

programming languages allows a hypothesis to be examined over a large sample set.

This can only increase the strength of one's conclusion.

F. TESTING FOR CORRECTNESS

SNET's solutions were tested for correctness by comparing optimal objective func-

tion- values to those calculated by GNET. GNET is a widely distributed program, used
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void durnpnode(node *curr, char indent[80])
-char nextindentt 80]

fprintf(dump, " n*/s[n*/i p%i c%i s%i d%i pat
%i pah*/i pax%li pau%li dp%+21i", indent,

curr->d, curr->pa->t->lbl, curr->pa->h->lbl,
curr->pa->x, curr->pa->u, curr->dp)

strcpy(nextindent, indent)
strcat(nextindent, " 1
if (curr->c !NULL) dumpnode(curr->c, nextindent)
if (curr->s !NULL) dumpnode(curr->s, indent)
return

void dumparc(arc *curr)
while(curr 1= NULL)

fprintf(dump, " n Ft%i h/.i X*/li u*/li r%+21i",
curr->t->lbl, curr->h->lbl,
curr->x, curr->u, curr->r)

curr =curr->next

return

void dumpale(ale *curr)
while(curr != NULL)

fprintf(dump, " n [t%i h%i x%li u/.li r%+21i",
curr->a->t->lbl, curr->a->h->lbl,
curr->a->x, cu-.r->a->u, curr->a->r)

curr =curr->next

return

Figure- 4. Data Snapshot Functions.

in over 100 projects for 15 years, with no reported cases of incorrect solutions. No dis-

crepancies were found.
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V. TUNING PARAMETER STUDY

A primary research effort examined how characteristics or measures of the network

problem's topology influenced the effects of program Luning parameter,,. The ultimate

goal of this research was to be able to calculate some simple measure of the problem

and then use these measures to select the tuning parameters that could solve the problem

in the fastest time.

This line of research eventually revealed that SNET is influenced only minimally by

the choice of tuning parameters, let alone the characteristics of the network problem.

Nonetheless, the author believes that 'the process used in the tuning parameter study

could, with other problem measures or program tuning parameters, produce more in-

teresting results in future experiments. This chapter describes that general research

process.

A. PROBLEM CHARACTERISTICS

In selecting measures of the network problem to examine, one fact must remain

paramount: if the calculations needed to derive the measures are too intensive, more

time may be spent calculating them than would be required to solve the problem without

setting the tuning parameters. Thus the measures must be simple to calculate. Prefer-

ably, they should be derivable as the problem data is being read into the program.

Three characteristics were studied: connectivity, exogenaity, and capacitance.

Connectivity (conn) measures the degree of connection between a network's nodes. It

is defined as the number of arcs divided by the number of nodes squared. Its value can

range from (essentially) zero to one. The connectivity of a network that is sparsely

connected, for example a spanning tree, would be close to zero. A network that is

completely connected, wifh an arc between every pair of nodes, would receive a value

of one.

Exogenaity (exog) measures the degree of exogenous (external) communication a

network has with its environment. It is defined as the number of exogenous nodes

(supply or sink nodes) divided by the total number of nodes. Its value can range from

zero to one. The exogenaity of a network that has few supply and sink nodes would be

close to z. :o. A transportation or assignment network, where every node is exogenous,

would receive a value of one.
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Capacitance (cap) is a coarse measure of how much additional flow a network can-

tolerate. It is-defined as the total flow from -ad supply nodes divided by the-sum-of-the
-arc's capacities. its range is also from zero to one, -although in practical networks its

value is likely to-be less than one half A network with a very low capacitance value-can

probably handle- more-flow, while one with a moderate or high level will have more dif-

ficulty accommodating increased flow.

B. TUNING PARAMETERS

Tuning parameters are meant to guide the- behavior of a program, hopefully leading
to improved performance. Possible tuning parameters applicable to network programs
include the number of arcs examined during each collection, the size of the candidate
queue, the number of candidates examined before -incoming arc selection and the value

of Big M. Although several tuning parameters may -be set within SNET, this research
examined only One,-percan.

Recall -that perc=,. the percentage of out of -basis candidates, is used- to set

inaxnbrcan, the maximpum- nun,b.i of favorable candidates e1 countered and considered

for inclusion in the candidate queue during each collection, as-follows:

nixnbrcan = percan x (number of real arcs - number of nodes)

maxnbrcan limits the number of out of basis arcs examined during each collection

by collect-can.

C. EXAMPLE GENERATION

An external driver program, DSSTEST (Appendix D), was used to generate-the ex-

amples for the study. DSSTEST uses three nested loops to vary the values of

connectivity, exogenaity, and capacitance. Each variable assumed five different values,
for a combination of 125 tl'roc-tuples. Each tuple was fed, via a translation routine, to

NETGEN which generates a random network problem whose characteristics are equal

to the tuple values. A fourth nested loop increments percan and then calls SNET to

solve the network problem. During the experiment percan assumed 19 different values.

The time required -for each call to SNET is recorded by DSSTEST, which then writes the
(con, exog, cap, percan, solution time) five-tuple to an external data file. DSSTEST

generated and recorded 2375 five-tuple examples.

Before analysis, the example set was reduced -by selecting the fastest example from

each of the 125 problems and then deleting the solution time from each example. Thus,

the example set used for analysis (Appendix E) consisted of 125 four-tuplcs; each con-
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taining f':e three.tuple that represents the characteristics of the problem and the tuning

parameter that produced the fastest solution for that- problem.

It should-be noted that-the differences in solution times for each NETGEN-problem

were-usually minor once percan exceeded a low (roughly 30 percent) threshold.

D. ANALYSIS

The examples were then analyzed using two quite different approaches: -inductive

learning, and multivariate linear regression analysis.

I. Inductive Learning

The inductive reasoning process starts with -specific examples and attempts to

develop general rules. Hopefully, these generalizing rules can replicate the knowledge

contained in-the examples in a more compact form.

Quinlan's ID3 induction algorithm [Ref. 12: pp. 167-1731 was- used to analyze

the reduced example -set. The ID3 algorithm -builds-rules -in the form of a-compact de-

cision tree. At each node, ID3 examines the examples available, to it. Using them, it

calculates how well each of the unused example characteristics predicts the parameter

value. The characteristic that best performs this- function is marked as used'and then

serves as the criteria for dividing the examples among the node's children. Although

each characteristic value can generate a child, values are -usually aggregat.ed to generate

the fewest children possible. This division process ,tarts at the tree's root node- and

continues, recursively, until all the examples assigned-to a node have the same paraneter

value.

The decision tree generated by JIJ) (Appendix F) is not significantly more

compact than the original example set. It has 101 terminal nodes. The example set

contained 125 examples. Thus, ID3's indt.n could not provide general rules given this

example set.

2. Regression Analysis

Multivariate linear regression provided more fruitful results. Stepwise regiession-

was applied to the same reduced example set. Analdsis of the output (Appendix G) re-

vealed that exogenaity was the only characteristic that had any statistically significant

impact upon percau. Though unquestionably important, exogenaity could only explain

about 50 percent of the variance in the value of the percan.

Thus neithcr analysis technique could provide an adequate method of setting the

percan parameter given the problem's characteristics.
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E. DYNAMIC TUNING

Although this research concentrated on static (unchanging) parameters and charac-
teristics, a similar methodology could be employed in the analysis of dynamic parameters

and characteristics. A study of dynamically varying tuning parameters during program

execution, based upon d namic problem characteristics, may provide clues for solving

problems faster.

Each of the tuning parameters given above can be altered dynamically. However
dynamic problem characteristics are more difficult to derive. Possible candidates for

future study include the slope of the objective function or the percentage of flow on ar-

tificial-arcs. This is an area that deserves further study.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
SNET is approximately twice as fast as a primal simplex-network solver written in

FORTRAN. SNET's algorithm is not new in the world of network solvers, only -its

method of storing and retrieving data. As discussed in Chapter 3, its-pointer linked data

structures allow information to be retrieved and -manipulated with minimal computa-

-tional effort. On the 40 problem NETGEN test set, assigning equal weight to each

problem, SNET is 127 percent faster than GNET, a primal simplex network -solver

written in FORTRAN. The test environment used and specific test times are provided

in Appendices A and B.
SNET is relatively insensitive to the tuning parameter examined. As noted in

Chapter 5, SNET's tuning parameter, percan, was-tested over 19 values for 125 different

random problems. For most problems, once percan exceeded-the 30 percent threshold,

its effect on solution time was negligible.

When new programming features become available for incorporation into a solver,

fundamental assumptions may no longer be valid and, -therefore, should be reexamined.

Before the use of true pointer data -structures, optimizers spoke of pivots being cheap and
price-outs being expensive. As the profiler reveals, this is not true when pointer based

structures maintain the data. Many examples of this maxim were encountered during

SNET's development.

B. RECOMMENDATIONS

The author has two recommendations -for future research: one concerning SNET

and the other dealing with-general network problems.

First, SNET--though fast--is not a mature solver. It could benefit from improve-

ments in many areas. Most serious though, is-the number of pivots that SNET requires

to solve a problem. A better method of selecting incoming arcs is needed to reduce the

number of pivots. Although SNET is faster than GNET, it also requires more pivots.
Its candidate selection method is simple and fast, but a better pivot sequence, though

more expensive to acquire, could significantly reduce total solution time.

Three general suggestions are offered for improving the pivot sequence. Each of

these areas could serve as a focus for -future research:
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* Maintain- the out of basis arcs in parallel linked lists, with list membership deter-
mined by a common head or tail node. This data structure would improve the ef-
ficiency of search routines and allow arcs that enter or leave a specific node to be
quickly located.

0 Research the effects of other sorting and searching methods during candidate col-
lection (bringing arcs into the candidate queue) and candidate selection (choosing
an arc from the candidate queue to enter the basis).

* Examine tuning parameter selection as a function of problem characteristics, both
static and dynamic.

Second, since true pointer based structures improved solver efficiency in solving

min-cost network problems, perhaps they can improve the efficiency of shortest path,

rain-cost spanning tree, traversals, and other network solvers.
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APPENDIX A. TEST ENVIRONMENT

SNET and GNET were tested under the same environment. All tests were run on
a NeXT Computer, model number N9001, with version- 1.0 of the NeXTSTEP operating

system and a Motorola 6S030 25MHz CPU.
The NETGEN problems were stored on an optical disk and then copied, one at a

time, to a 330 Megabyte hard disk. Each solver read the problem from the hard drive.

The Next's 16 Megabytes of main memory was more than sufficient for each of the

problems and no paging was required.

The combined problem read in- and solution time of each solver was recorded for
comparison purposes. Time used was measured by the C clock function.

GNET is written in FORTRAN 77 and was compiled using the Absoft FORTRAN
compiler, NeXT version 2.0, with the optimizing flag turned on. GNET's tuning pa-

rameters were set as recommended by its developers.

SNET is a C program. It was compiled with the NeXT version of the GNU C
compiler developed by the Free Software Foundation. SNET was also compiled with

the optimizing flag turned on. Its tuning parameter, percan, was not set via the com-

mand line argument. Therefore, by de'ault, maxnbrcan was set to MAXCAN (20,000).
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APPENDIX B. TIME TRIALS: SNET VS. GNET
netgen snet gnet fraction

1 2.53 4.92 0.51
2 2.80 5.34 0.52
3 3.22 6.75 0.48
4 3.50 7.30 0.48
5 3.86 9.22 0.42
6 4.66 10.58 0.44
7 6.25 14.67 0.43
8 7.05 16.66 0.42
9 7.56 18.48 0.41

10 8.09 19.-80 0.41
11 3.23 6.25 0.52
12 3.56 8.52 0.42
13 4.61 10.39 0.44
14 5.45 12.78 0.43
15 5.56 15.20 0.37
16 2.25 4.72 0.48
17 3.03 7.,88 0. 38
18 2.36 4.86 0. 49
19 3.11 7.59 0.41
20 2.39 5.09 0.47
21 3.38 8.o9 0.39
22 2.34 5.00 0.47
23 3.22 8-.58 0.38
24 2.42 4.95 0.49
25 3.64 8.27 0.44
26 1.95 4.69 0.42
27 3.22 8.09 0.40
28 4.30 10.70 0.40
29 5.33 11 88 0.45
30 5.80 14.52 0.40
31 6.25 15.77 0.40
32 6.59 16.70 0. 39
33 6.69 16.61 0. 40
34 7.52 19.05 0.39
35 8.61 20.78 0.41
36 54.34 12$. u6 0.44
37 55.42 105.75 0.52
38 56.20 125.67 0.45
39 41.55 81.41 0.51
40 .36.95 82.39 0.45

mean difference in- speed 0. 44
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APPENDIX C. PROGRAM LISITING: TESTEXEC
1* Time network solvers on standard NETGEN problems *

/*-H{eader file */

#'include <stdio.h>

#/include <string. h>

1* Print an error message to the screen and stop the program *
void halt(char message( 80]-)

printf(" nHalt invoked, error in %s process. n", message)
exit( 1)

/* -reverse: reverse string s in place *
void reverse(char s[])

Int c, i, j- ;

for -(i = 0, j =strlen(s) - 1; i < j; i+I, j--)
sci = s( j]

s[j] =c

1* itoa: convert n to characters in s
char *itoa(int n)
finti =0, sign;

char s[25]

if ((sign =n) < 0) n = -n
do fs[i++j = n % 10 + '0'

while ((n /= 10) > 0)
if( sign <0) s[i++]=

sl i] = 0'
reverse(s);
-return(s)

void main()
{ mt i, first, last
long start,

end;
float deltimel, deltime2, fraction, sum =0
char infilename[ 80]-

outfilenameE 80],
code[ 25],
command[ 80];

FILE *infile_
*timefile;

33



/*-'Open timing file *
if ((timefile fopen("raw. time"-, "a"-)-) =NULL)

halt("opnn timing file)

/*-Print timing -file header *
fprintf(timefile, "netgen snet gnet fraction n")

/* Main loop */
-1* NOTE: be sure loop values are correct before final tests *
first 1 ;
last =40;
for (i = first; i <= last; i4-I)

/* Get filename for optical disk *
strcpy(code, itoa~i?)
strcpy( infilename, '/NetGenDisk~problems/nett )
if (i < 10) strcat(infilename, 0")
strcat(infilename, code)

/* Set local filename *
strcpy(outfilename, "'net)
if (i < 10) strcat(outfilename, "0")
strcat(outfilename, code)

1* Inform console */
print f(" 11 ~ ***** PROBLEM NET0/i n",- i)

/* Copy file from optical-disk to-hard disk *
strcpy(command, "cp ");
strcat(command, infilename)
strcat(command,_ " "
strcat(command, outfilename)
system(command);

/* Time pointer version of snet *
strcpy(command, "time pointerI)
strcat(command-, outfi-lename)
start =-clock(-)
system( command)
end = clock();
deltimel = ((float)(end-start) ICLKJTCK)
fprintf(timefile," %8.2f '",deltinel)

/*Time GNET *
printf(" n"
rename(outfilename, "net")
strcpy(command,_"time gnet '
start = clock();
system( command);
,end =clock();
deltime2 = ((float)(end-start) /CLK._TCK)
fprintf(timefile,"' %8.2f ",deltime2)

/Calculate snet as a fraction of GNET *
fraction =-deltimel / deltime2;
sum + frtionlIe" 8.2 ",rcin
fprin=tfrtiie"on2 "frcin
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/* Delete file from hard disk /
remove("net")

sum =sum / ((last - first) + 1)
fprintf(timefile," n mean difference in speed %8.2f n't,sum)
fclose(timefile)
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APPENDIX D. PROGRAM LISITING: DSSTEST

/* Time random network-problems and-program parameters *

/* Header file *

V-"include <stdio. h>
#'jinclude <stdlib. h>
#include <string. h>

/* Print an error message to the screen and stop the program *
void halt(char message[-80])

{printf(" nHalt invoked, error in %s5 process. n", message)-;
exit( Il

/* reverse: reverse string s in place *
void reverse(char s[]-)-

f mt c, i, j;

for (i 0, j =strlen(s) - 1; i < j; i++, j--)
c =s[i]
s[i] =slj]

S[j = c;

1* itoa: convert n to characters in s
char *itoa(int n)

mnt i =0, sign;
char s[25]_

if ((sign =n) < 0) ni = -n
do fs[i++] = n %. 10 + '0'

while ((n /= 10) > 0)
if Csign < 0) s[i++] -

S[ i] = ' 0'
reverse(s)
return(s)

void main()
int nbr_nodes = 200,

mm ,_arc_cost = 1,
max_arc_cost = 100,
nbr-arcs,
nbr_exog.nodes,
nbr...supnodes,
nbrjdemnodes,
max.up..bnd,
min.up..bnd,
parameter-,
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long start,
end;

float tot-.supply =100000.0,
frac_arcs..cap =-0.75,
epsilon = 0.0003,
sum -arc-.cap,
-deltim,
con,
exog,
cap;

char inf ilename[ 25] ,
code[ 25],
dummy[ 80],
comniandf 80]-,
scale[ 5001,
rand_nbr[] " 139962782:,
-parstr[ 25]

FILE *infile,
*timefile

/* Open timing file *
if ((timefile = fopenc2'cantimes 110w)) NULL)

halt("opnn timing file")

/* Main 1oop */
/* NOTE: be sure loop values are correct -before final test *

for (con =0.05; con <= 0.85 + epsilon; con +=0.20)
for -(exog = 0.10; exog <= 0.90 + epsilon; exog +=0.20)

for (cap = 0. 10; cap <= 0. 50 + epsilon; cap +=0. 10)
nbr_arcs = nbr...nodes * nbr..nodes *con
nbr-exog.nodes =nbr..nodes * exog
nbr..sup.nodes =nbr-exog-.nodes * 0. 20
nbr_dem..nodes =nbr-exog..nodes * 0. 80
sum_arc.cap =tot-..supply / cap ;
rnax..up...bnd =sum..arc~cap / nbr..arcs
min.up_..bnd =0. 25 * max-up..bnd

strcpy(code, itoa(con * 100))
strcat(code, itoa(exog *100)-)
strcat(code, itoa(cap * 100))
strcpy(-inf ilename, "ni");
strcat(infilename, code)

if ((infile = fopen~infilename, "w)' NULL)
halt("openingNETGEN 'in' file")

£printf(infile, It%s n", rand..nbr)
fprintf(infile,

"%Si%5i%5i%5i%5i%5i%l0li%5i%5i%5. lf%5. lf%l0i%l0i n"
nbr_nodes,
nbr_sup..nodes,
nbr..em.._nodes,
nbr-arcs,
minarc~cost,
max_arccost,
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(long) tot..supp ly,
0,
0,
5.0,
100.0 * frac arcs-c&ap,
min...upbnd,
max.up..bnd)

fclose(infile);
rename~infilename, it n

t ")

printf("generating problem for code %s n"-, code)
system( "netgen");
printf( ::solving problem with captran n")
fprintf(timefile, "code: %s n", code);

/* NOTE: correct loop values before final test *
for (parameter = 5; parameter <= 95; parameter += 5)

strcpy(parstr, itoa(parameter?-)-;
strcpy(coinmand, s"captran net ')
strcat(command, parstr);
strcat(command, '>outfile");

start = clock()
system( command)
end = clock();
deltim = ((float)(end-start) ICTJK...CK)-
scalefO] =' 0';
for (j = 1; j <= (int)(deltim); j++)

strcat(scale, "I*") ;
fprintf(timefile,"%4i %4i %4i %4i %6.2f %s ni",

(int)(con*100), (int)(exog*l00), (int)(cap*100),
parameter, deltim, scale)

fprintf(timefile, 'n n)

rmov(neti)

remove( "neti")

rernove( netrep"

felose(timefile)
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APPENDIX E. EXAMPLE SET (REDUCED)

This reduced example set consists of 125 four-tuples. They are the Connectivity,

Exogenaity, and Capacitance network problem -characteristics and- the best (fastest)

tuning parameter choice for 125 random problems. The example set is used as sample

data for Induction and Regression Analysis.

Problem [Best
Characteristics I Parameter

Con Exog Cap Percan
5 10 10 25-
5 10 20 55
5 10 30 30
5 10 40 25
5 10 50 35
5 30 10 30
5 30 20 45
5 30 30 15
5 30 :40 50
5 30 50 50
5 50 10 80
5 50 20 30
5 50 30 35
5 50 40 30
5 50 50 25
5 70 10 35
5 70 20 50
5 70 30 35
5 70 40 75
5 70 50 55
5 90 10 55
5 90 20 55
5 90 30 55
5 90 40 75
5 90 50 55

25 10 10 20
25 10 20 30
25 10 30 10
25 10 40 10
25 10 50 20
25 30 10 35
25 30 20 35
25 30 30 25
25 30 40 15
25 30 50 50
25 50 10 35
25 50 20 45
25 50 30 45
25 50 40 35
25 50 50 80

39



25 70 10 -45
25 70 20 -45
25 70 30 55
25 70 40- 85
25 70 50 45
25 90 10 40
25 90 20 35
25 90 30 30
25 90 40 35
25 90 50 50-
45 10 10 5
45 10 20 15
45 10 30 10
45 10 40 10
45 10 50 15
45 30 10 25
45 30 20 20
45 30 30 25
45 30 40 85
45 30 50 30
45 50 10 40
45 50 20 40
45 50 30 40
45 50 40 40-
45 50 50 60
45 70 10 -80
45 70 20 30
45 70 30 60=
45 70 40 55
45 70 50 65
45 90 10 55
45 90 20 60
45 90 30 55
45 90 40 45
45 90 50 45
65 10 10 25
65 10 20 15-
65 10 30 5
65 10 40 20
65 10 50- 20
65 30 10 10
65 30 20 30
65 30 30 25
65 30 40 15
65 30 50 5
65 50 10 45
65 50 20 30
65 50 30 40
65 50 40 25
65 50 50 30
65 70- 10 60
65 70 20 75
65 70 30 60
65 70 40 60
65 70 50 50-
65 90 i0 80
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65 90 20 35
65 90 30 45
65 90 40 80
65 90 50 90
85 10 10 10
85 10 20 10
85 10 30 10
85 10 40 10
85 10 50 15
85 30 10 25
85 30 20 15
85 30 30 5
85 30 40 5
85 30 50 5
85 50 10 75
85 50 20 30
85 50 30 40
85 50 40 30
85 50 50 35
85 70 10 60
85 70 20 55
85 70 30 50
85 70 40 50
85 70 50 60
85 90 10 60
85 90 20 60
85 90 30 80
85 90 40 95
85 90 50 80
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APPENDIX F. INDUCTIVE DECISION TREE

Decision tree for reduced example set

1: exog??
2: <20. 00: con??
3: <15. 00: cap??
4: <45. 00: cap??
5: <25. 00: cap??
6: <15.00: ------------------------------25
7: >15. 00: ------------------------------- 55
8: >25. 00: cap??
9: <35.00:------------------------------ 30

10: >35. 00:------------------------------ 25
11:- >45. 00: ---------------------------------- 35
12: >15. 00: cap??
13: <45. 00: cap?-?
14: <25. 00: con??
15: <75.00:-cap??
16: <15.-00: con??
17: <35.00: --------------------------20
18: >35.00:con??
19: <55.00:------------------------ 5
20: >55. 00: ----- - - - - - - - - - -25
21: >15. 00: con??
22: <35.00: --------------------------30
23: >35.00: --------------------------15
24: >75. 00: ------------------------------10
25: >25.00:con??
26: <55.00:------------------------------- 10
27: >55. 00; con??
28: <75. 00: cap??
29: <35.00: -------------------------- 5
30: >35 .00: --------------------------20
31: >75. 00: ----------------------------10
32: >45. 00: con??
33: <35.00: -------------------------------- 20
34: >35. 00: con?*?
35: <55.00:------------------------------ 15
36: >55. 00: con??
37: <75. 00:---------------------------- 20
38: >75.- 00:----------------------------15
39: >20. 00: exog??
40: <60.00:exog??
41: <40. 00: cap??
42: <35. 00: con??
43: <15.00:cap??
44: <15. 00: ----------------------------30
45:- >15.00:cap??
46: <25.00: --------------------------45
47: >25.00: --------------------------15
48: >15. 00: con??
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49: <55. 00: con??
50: <35.00:cap??
51: <25. 00: ------------------------35
52: >25. 00: ------------------------25
53: >35.O0:cap??
54: <15. 00: ------------------------25
55: >l5.O0:cap??
56: <25.00: -----------------------20
57: >25.00:--------------------- 25
58: >55.00:-con??
59: <75.00:cap??
60: <15-00: ------------------------10
61: >15.00:cap??
62: <25.00: ----------- w------------30
63: >25. 00: -----------------------25
64: >75.-00: cap??
65- <15. 00: ------------------------25
66: >15. 00: cap??
67:- <25.00: -----------------------15
68: >25.00: -----------------------5
69: >35.00:con??-
70: <35. 00: con??
71: <15. 00: ----------------------------50
72: >15.00:cap??
73: <45. 00:--------------------------15
74: >45. 00: --------------------------50
7;5: >35. 00: con??
76: <55.00:cap??
77: <45.00: --------------------------85
78: >45. 00: --------------------------30
79: >55.00:con??
80: <75. 00: cap??
81: <45.00: -------------------------15
82: >45. 00: -------------------------5
83: >75. 00: --------------------------5
84: >40. 00: con??
85: <35. 00: cap??
86: <45. 00: con??
87: <15. 00: cap??
88: <15. 00: --------------------------80
89: >15. 00: cap??
90: <25.00:------------------------ 30
91: >25.00:cap??
92: <35.00: -----------------------35
93: >35.00: -----------------------30
94: >15. 00: cap??
95: <15. 00: --------------------------35
96: >15.00:cap??
97: <35.00: -------------------------45
98: >35.00: -------------------------35
99: >45. 00: con??

100: <15.00: ----------------------------25
101: >15.00: ----------------------------80
102: >35.00:con??
103: <55. 00: cap??
104: <45.00: ----------------------------40
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105: >45. 00: --- - - - -- - -- - - - --60
106: >55. 00: cap??.
107: <15. 00: con??
108: <75. 00:-------------------------- 45
109: >75. 00: ----------- --------------- 75
110: >15. 00: cap??
Ill: <35.00:cap??
112: <25.00: ------------------------30
113: >25. 00:------------------------ 40
114: >35. 00: con??
115: <75.00:cap??
116: <45.00: -----------------------25
117: >45.00: -----------------------30
118: >75.00:cap??
119: <45.00: ----------------------- 30
120: >45.00: ----------------------- 35
121: >60.00:con??
122: <35. 00: coni??
123: <15. 00: cap??
124: <35. 00: exog??
125: <80. 00: cap??
126: <15. 00: --------------------------35
127: >15.00:cap??
128: <25.00:------------------------ 50
129: >25.00: ------------------------35
130: >80. 00: ----------------------------55
131: >35.00:cap??
132: <45.00: ----------------------------75
133: >45.00: ----------------------------55
134: >15. 00: exog??
135: <80. 00: Cap??
136: <25. 00: ----------------------------45
137: >25.00:cap??
138: <35. 00: --------------------------55
139: >35. 00: cap??
140: <45. 00:------------------------85
141: >45. 00: ------------------------45
142: >80. 00: cap??
143: <15. 00: ----------------------------40
144: >15. 00: cap??
145: <45. 00: cap??
146: <23. 00:-------------------------- 35
147: >25.00:cap??
148: <35. 00: ----------------------30
149: >35.00: -----------------------35
150: >45. 00: --------------------------50
151: >35. 00: exog??
152: <80. 00: con??
153: <55. 00: cap??
154: <25. 00: cap??
155: <15. 00: --------------------------80
156: >15.00: --------------------------30
157: >25. 00: cap??
158: <35.00: --------------------------60
159: >35. 00: cap??
160: .<45. 00: ------------------------55
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161: >45. 00: --- - - - - - - - - - - -65
162: >55. 00: cap??
163: <25. 00: cap??
164: <15. 00:--------------------------60
165: >15. 00: con??
166: <75. 00: ------------------------75
167: >75. 00: ------------------------55
168: >25.-00: con??
169: <75.00:-cap?-?
170: <45.00: ------------------------60
171: >45.00: ------------------------ 50
172: >75. 00: cap??
173: <45.00: ------------------------50
174: >45.00: ------------------------60
175: >80.0O:cap??
176: <25. 00: cap??
177: <15.00:con??
178: <55.00: --------------------------55
179: >55. 00: con??
180: <75.00: ------------------------80
181: >75.00: ------------------------60
182: >15.00:con??
183: <55. 00: --------------------------60
184: >55. 00: con??
185: <75.00: ------------------------35
186: >75. 00: ------------------------60
187: >25. 00: con??
188: <55. 00: cap??
189: <35.00: -------------------------- 55
190: >35.00: --------------------------45
191: >55. 00: con??
192: <75.00:cap??
193: <35. 00: ------------------------45
194: >35. 00: cap??
195: <45.00: -----------------------80
196: >45. 00: -----------------------90
197: >75. 00: cap??
198: <35. 00: ------------------------80
199: >35. 00: cap??
200: <45.00: ---------------------- 95
201: >45.00: ---------------------- 80
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APPENDIX G. REGRESSION ANALYSIS

STEPWISE REGRESSION OF percan ON 3 PREDICTORS, WITH N = 125

STEP 1
-CONSTANT 13.02

exog 0.542
T-RATIO 10.84

S 15.8
R-SQ 48.86

LINEAR REGRESSION OF percan ON 1 PREDICTOR exog

The regression equation is
percan = 13.0 + 0.542 exog

Predictor Coef Stdev t-ratio p
Constant 13.020 2.872 4.53 -O.000
exog 0.54200 0.05000 10.84 0.000

s = 15.81 R-sq = 48.9% R-sq(adj) =-48.4%

Analysis of Variance
SOURCE DF SS MS F p
Regression 1 29376 29376 117.52 0.000
Error 123 30747 250
Total 124 60123

Unusual Observations
Obs. exog percan Fit Stdev.Fit Residual St. Resid

2 10.0 55.00 18.44 2.45 36.56 2.34R
11 50.0 80.00 40.12 1.41 39.88 2.-53R
40 50.0 80.00 40.12 1.41 39.88 2.53R
44 70.0 85.00 50.-96 1.73 34.04 2.17R
48 90.0 30.00 61.80 2.45 -31.80 -2.-04R
59 30.0 85.00 29.28 1.73 55.72 3.55R

111 50.0 75.00 40. Ir 1.41 34.88 2.-21R
124 90.0 95.00 61.80 2.45 33.20 2.13R

LINEAR REG(22SSION OF percan ON 3 PREDICTORS, WITH N = 125

The regression equation is
percan = 13.5 - 0.0500 con + 0.542 exog + 0.058 cap

Predictor Coef Stdev t-ratio p
Constant 13.530 4.736 2.86- 0.005
con -0.05000 0.05013 -1.00 0.321
exog 0.54200 0.05013 10.81 0.000
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cap 0.0580 0. 1003 0.58 0.564

s = 15.85 R-sq = 49.4% R-sq(adj)= 48.2%

Analysis of Variance
SOURCE DF SS MS F p
Regression 3 29710.5 9903.5 39.40 0.000
Error 121 30412.7 251.3
Total 124 60123.2

SOURCE DF SEQ SS
con 1 250.0
exog 1 29376.4
cap 1 84.1

Unusual Observations
Obs. con percan Fit Stdev.Fit Residual St. Resid
2 5.0 55.00 19.86 3.33 35.14 2.27R
11 5.0 80.00 40.96 3.17 39.04 2.51R
40 25.0 80.00 42.28 2.65 37.72 2.41R
44 25.0 85.00 52.54 2.24 32.46 2.07R
48 25.0 30.00 62.80 2.65 -32.80 -2.10R
59 45.0 85.00 29.86 2.01 55.14 3.51R
i11 85.0 75.00 36.96 3.17 38.-04 2.45R
124 85.0 95.00 60.38 3.33 34.62 2.23R

PLOT 'percan' vs. exog'

90+ *

percan - 3 5

60+ * 6
S4 6

4 3 7 4
6

• 2 4 2 3

30+ 2 3 6 * *

- 3 5 2
- 8 5
- 8 *
- 2 4

0+ ... + -------- +------+------------.--------+----------- +exog
15 30 45 60 75 90
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